Case Study: GiPSi - An Open Source / Open Architecture Software Development Framework for Surgical Simulation

M. Cenk Cavusoglu, PhD
cavusoglu@case.edu
Case Western Reserve University
Dept. of Electrical Eng. and Computer Sci.
http://vorlon.cwru.edu/~mcc14/

Project Focus

- Organ level simulation
 - Heterogeneous physical processes within the organs
 - Multiple organ interactions
 - Hierarchy of models
- Surgical simulation
 - Training
 - Preoperative planning
 - Intraoperative assistance

Simulation for Medical Training - MICCAI 2003

Technical Issues

- Abstraction
- Heterogeneous Physical Mechanism and Models of Computation
- Customization with Patient Specific Models
- Verifiability
- Modularity through Encapsulation and Data Hiding

Simulation for Medical Training - MICCAI 2003

Test Bed: Heart Model for Surgical Simulation

Simulation for Medical Training - MICCAI 2003

Heart Model

Simulation for Medical Training - MICCAI 2003
GiPSi – General Interactive Physical Simulation Interface

- An open source / open architecture software development framework for surgical simulation
- Define APIs, Implement selected models and tools

Focus:
- Support for heterogeneous models of computation
- Interfacing between heterogeneous physical processes
- Standardized I/O interfaces for visualization and haptics
- Real-time interactive simulation applications

Goals:
- Least restrictive and most general APIs
- Allow a variety of simulations

Modeling Tools – Deformable Object Models

- Finite element (linear and nonlinear) and lumped element models implemented

- Finite element model:
 - Geometric and material nonlinearity
 - Multi-grid integration
 - Adaptive mesh refinement using dynamic progressive meshes

Modeling Tools – Fluid Models

- FEM based incompressible viscous fluid model (2D and 3D implemented)
 - Supports models with unstructured domains
 - Facilitates interfacing with models that have arbitrary boundary
- Stable
 - Advection solved using Semi-Lagrangian
 - Incompressibility imposed by Pressure Correction-Projection method
- Moving grids (ALE)

API
- Fluid / Solid Interface (in progress)
- Fluid model accepts velocity boundary conditions from the solid liquid boundary and returns force boundary conditions to the solid object

Support and Utility Functions – Collision Detection / Collision Response

API
- Each collidable object exports its boundary surface to Collision Detection (CD) Module
- CD Module detects collisions and reports colliding pairs to Collision Response (CR) Module
- CR Module computes the necessary penalty forces or the displacements and passes the results to objects as surface tractions or as Dirichlet boundary conditions

Collision Detection
- Exact or inexact
- Current implementation is based on Axis Aligned Bounding Boxes

Collision Response
- Penalty Forces
- Displacements

*FEM implementations adapted from Wu & Tendick (2003), and Wu, Goktekin, & Tendick (2001).
I/O Interfaces – Visualization

- Sim. Object
- Sim. Object
- Sim. Object

Triangle Graphics Buffer

Visualization Engine

I/O Interfaces – Haptics

- Sim. Object

Haptic Interface

Local Physical and Geometric Model

Instrument Constraints

User

- Slow update rate: Global mechanical deformation computation.
- Fast update rate: Local collision detection and force feedback computation.

Multi-rate simulation for high fidelity and stable haptic interaction.

Computational Tools

- Object based implementation of Matrix and Vector operations
 - Uses BLAS for highly efficient linear algebra operations
- Solvers for linear algebraic equations
- Standard interfaces for explicit numerical integration
 - Number of numerical integration methods implemented
 (Euler, Midpoint, Modified Euler, Runge-Kutta (2,3,4), Heun)
- Planned:
 - Discrete event systems
 - Hybrid systems
 - Differential-Algebraic equations
 - Nonlinear algebraic equations

Object API

- API
 - Display Geometry
 - Physical Model(s)
 - Computation geometry (mesh)
 - Boundary condition geometry (surface)
 - Display geometry (typically surface)
 - Local model generation
 - Local haptic model
 - Integration

Sample Object Model

```cpp
class Heart : SimObject {
  Geometry HeartGeometry;
  NonLinearFEM Muscle;
  LumpedFluidModel Blood;

  Integrate();
  LocalHapticModel();
  Display();
}
```

Simulator Architecture

Models
- Physiology of Heart Beat Regulation
- Heart Tissue Deformation
- Blood Dynamics

Simulation Kernel
- Collision Detection
- Support Utility Functions

Computational Tools
- Ordinary Differential Eq.
- Differential Algebraic Eq.
- NL Algebraic Eq.
- Discrete Event Systems
- Hybrid Systems

Input/Output
- Haptic Interface
- Visualization
Team and Collaborators

- Prof. M. Cenk Cavusoglu (CWRU)
- Tolga Goktekin (UC Berkeley)
- Prof. Shankar Sastry (UC Berkeley)
- Prof. Frank Tendick (UC San Francisco)
- Dr. Xunlei Wu (UC Berkeley – now at MIT)
- Prof. Kathy Yelick (UC Berkeley)

References – General Surgical Simulation Frameworks

References – Physical Modeling and Simulation Frameworks

References – Components of GiPSi