Validation and Performance Metrics

Stephane Cotin
cotin.stephane@mgh.harvard.edu
CIMIT Simulation Group / Harvard Medical School

Validate, but what?
- Validate training systems as a whole
 - Skills trainers
 » Define objective measures for technical skills
 » Classify types of skills to teach
 - Procedural training systems
 » Full scale validation studies
 » Demonstrate validity & reliability
- Validate components (e.g., tissue models)
 - Use quantitative measurements when possible
 - Define a reference model and a set of metrics
- Define standardized methods of validation
 - Truth Cube (www.truthcube.org) for soft tissue models

Types of Validity*
- Face validity
 - The chosen tasks resemble those that are performed during a surgical procedure
- Content validity
 - The test for measuring a specific skill actually measures this skill and not another one
- Construct validity
 - Degree to which the test actually captures the skill level it was designed to measure (discrimination between experts and novices)
- Concurrent validity
 - Extent to which a test yields the same results as other measures of the same phenomenon
- Predictive validity
 - Relates to transfer in the operating room

Definitions of Performance Metrics
- "CELTS" Computer Enhanced Laparoscopic Skills Training System
- Use kinematics analysis to define a set of parameters that describe specific skills
- Define metrics by measuring the “distance” (z-score) between values obtained by the trainee and an expert group

Performance Assessment using Kinematic Analysis
- Depth Perception
- Smoothness of motion
- Instrument orientation
- Path length
- Grasping
- Time
- Task outcome

Smoothness of motion = \(\sqrt{\frac{1}{T} \int_{0}^{T} \left(\frac{d^2 s}{dt^2} \right)^2 dt} \)
Validity of CELTS

- **Face validity**
 - Tasks were chosen by surgeons and provide realistic visual and haptic feedback
- **Content validity**
 - Tasks are designed to incrementally teach laparoscopic skills, from depth perception to suturing
- **Construct validity**
 - Validation study demonstrated very significant differences in scores between experts and novices
- **Concurrent validity**
 - Unknown
- **Predictive validity**
 - Unknown

Validation

- **Validation of the whole system**
 - Validate the training system in terms of educational content and transfer to the real world
 - Need to assess the reliability of the training system
- **Validation of the components of a system**
 - Occurs during development phase
 - Define specific metrics for assessment of major components of the system
 - Example: “Truth Cube” for assessing soft tissue models

Validation & Reliability

- **Types of reliability**
 - **Inter-rater reliability**
 - Extent to which two different evaluators score the same test
 - Used to validate a training system by comparing the score provided by the simulator with the (usually qualitative) assessment provided by an instructor
 - Test-retest reliability
 - If tested twice on the same the trainee should get a similar score
 - However when learning occurs scores should improve

What else needs to be validated?

- **Haptic feedback**
- **Curriculum**

Other validation system: Blue DRAGON

- Track the motion of and forces applied to surgical tools during live procedures
- Methodology based on a finite state Markov model
- Each state corresponds to a fundamental tool/tissue interaction based on tool kinematics and Force/Torque signatures
- Analysis of the data shows that skills differences are related to:
 - type of tool/tissue interactions being used
 - transitions between tool/tissue interactions being applied by each hand
 - time spent while performing each tool/tissue interaction
 - overall completion time

Component Validation

- **Validation of tissue models**
 - Many tissue models available (FEM, mass-spring, ...)
 - Which one works best overall and for a specific application?
 - What to compare a model to?
- **What else needs to be validated?**
 - Haptic feedback
 - Curriculum
 - ...
“Truth Cube”

- Concept of a “gold standard” for assessing soft tissue models
- Comes from the “real world” to avoid introducing assumptions or simplifications

More information at: www.truthcube.org

“Truth Cube” setup

- Material: two-part Silicone Rubber mixed in 30:70 proportion
- Beads: 1.58 mm diameter Teflon balls
- Stiffness of rubber with beads = Stiffness of rubber without beads
- Poisson's Ratio assumed to be 0.5
- Young's modulus = 14.9 kPa
- Tests performed under nearly frictionless condition
- Imaging performed on General Electric LightSpeed CT scanner

References

- Phil Wallace, The Role of Simulation in Skill Learning, SimTect Medical Symposium, 2001
- Patricia Youngblood and Parvati De, An Evaluation Framework for the Validation of Surgical Simulators, SimTect Medical Symposium, 2001

Conclusion

- The medical community is expecting a lot from medical simulation
- Negative training must be avoided by developing realistic training systems based on real-world data
- Validation is the key to the acceptance of computer-based simulation by the medical community
 – Validate components of simulators like tissue models
 – Validate the final training system